Negative blood oxygenation level dependent homunculus and somatotopic information in primary motor cortex and supplementary motor area.
نویسندگان
چکیده
A crucial attribute in movement encoding is an adequate balance between suppression of unwanted muscles and activation of required ones. We studied movement encoding across the primary motor cortex (M1) and supplementary motor area (SMA) by inspecting the positive and negative blood oxygenation level-dependent (BOLD) signals in these regions. Using periodic and event-related experiments incorporating the bilateral/axial movements of 20 body parts, we report detailed mototopic imaging maps in M1 and SMA. These maps were obtained using phase-locked analysis. In addition to the positive BOLD, significant negative BOLD was detected in M1 but not in the SMA. The negative BOLD spatial pattern was neither located at the ipsilateral somatotopic location nor randomly distributed. Rather, it was organized somatotopically across the entire homunculus and inversely to the positive BOLD, creating a negative BOLD homunculus. The neuronal source of negative BOLD is unclear. M1 provides a unique system to test whether the origin of negative BOLD is neuronal, because different arteries supply blood to different regions in the homunculus, ruling out blood-stealing explanations. Finally, multivoxel pattern analysis showed that positive BOLD in M1 and SMA and negative BOLD in M1 contain somatotopic information, enabling prediction of the moving body part from inside and outside its somatotopic location. We suggest that the neuronal processes underlying negative BOLD participate in somatotopic encoding in M1 but not in the SMA. This dissociation may emerge because of differences in the activity of these motor areas associated with movement suppression.
منابع مشابه
On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area.
We used functional magnetic resonance imaging to examine the representation pattern for repetitive voluntary finger movements in the primary motor cortex (M1) and the supplementary motor area (SMA) of humans. Healthy right-handed participants performed repetitive individuated flexion-extension movements of digits 1, 2, and 3 using the dominant hand. Contralateral functional labeling for the gro...
متن کاملConstraints on somatotopic organization in the primary motor cortex.
Since the 1870s, the primary motor cortex (M1) has been known to have a somatotopic organization, with different regions of cortex participating in control of face, arm, and leg movements. Through the middle of the 20th century, it seemed possible that the principle of somatotopic organization extended to the detailed representation of different body parts within each of the three major represe...
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملFunctional organization of human supplementary motor cortex studied by electrical stimulation.
The presence of somatotopic organization in the human supplementary motor area (SMA) remains a controversial issue. In this study, subdural electrode grids were placed on the medial surface of the cerebral hemispheres in 13 patients with intractable epilepsy undergoing evaluation for surgical treatment. Electrical stimulation mapping with currents below the threshold of afterdischarges showed s...
متن کاملNeural Substrates for Head Movements in Humans: A Functional Magnetic Resonance Imaging Study.
The neural systems controlling head movements are not well delineated in humans. It is not clear whether the ipsilateral or contralateral primary motor cortex is involved in turning the head right or left. Furthermore, the exact location of the neck motor area in the somatotopic organization of the motor homunculus is still debated and evidence for contributions from other brain regions in huma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 45 شماره
صفحات -
تاریخ انتشار 2012